

INSTRUCTION MANUAL FOR ESTABLISHING CONNECTION TO

CREDIT AGRICOLE’S XS2A PRODUCTION ENVIRONMENT

Version 1.4

2

Table of Contents
INSTRUCTION MANUAL FOR ESTABLISHING CONNECTION TO CREDIT AGRICOLE’S XS2A PRODUCTION

ENVIRONMENT .. 1

Prerequisites .. 3

JWS signature generation .. 4

AIS service call example ... 4

Authorization ... 4

Token generation ... 6

Service execution ... 7

Changes and additional details vs PolishAPI standard ... 9

Acquiring permissions to retrieve payment status .. 9

Specifying the consent scope ... 10

Retrieving account information with account selection on the ASPSP side 12

Renewal of SCA for AIS consent ... 12

Request Limits ... 13

Restrictions on consent validity ... 13

3

Prerequisites
Steps to complete before starting work with the production environment:

 Secure qualified certificates necessary for communication with XS2A API endpoints.

 Read the technical specification of services published by the API Portal at:

https://www.credit-agricole.pl/apiportal.

Things to keep in mind while working with the production environment:

 Connections to the endpoints are established using two-way (mutual) TLS authentication with

QWAC certificates.

 Each and every request and response must be signed with QSEAL certificates. As per the

PolishAPI standard (https://polishapi.org/#docs), when you call a service, the request must

include a JWS-SIGNATURE header with the JWS signature of the request content. The process

of generating a JWS signature is detailed later on.

 The "requestId" field must be unique in each call.

 The value of the "tppId" field in a call must be consistent with the value of field "Organization

Identifier" (organisationIdentifier - 2.5.4.97) in the test certificates used.

 The content of the "client_id" field in requests must match the value of the "tppId" field.

 The solution does not support a dedicated onboarding service. The first, correct call to the

/authorize service using valid certificates is equivalent to registering the TPP application.

https://www.credit-agricole.pl/apiportal
https://polishapi.org/#docs

4

JWS signature generation
 In order to ensure integrity and immutability of transmitted messages, each message must

have a X-JWS-SIGNATURE header containing the JWS signature of the request. The JWS signature

must be generated in line with RFC 7515. What is more, the JWS signature should be prepared without

the payload (i.e. it should be detached) and it should be generated based on the unencoded payload

(Unencoded Payload Option - RFC 7797).

The JWS signature header should include the following parameters

 "alg" – algorithm used for signing – this field should equal "RS256"

 "x5c" – certificate or certificate chain corresponding to the key used to generate the signature

 "x5u" – URL address of the certificate corresponding to the key used to generate the signature

 "x5t#S256" – base64url-encoded thumbprint of the certificate corresponding to the key used to

generate the signature

 "b64" – information whether the signature was generated based on an encoded payload – it

should equal false

 "kid" – identifier of the key used to generate the signature

Please note that either the "x5c" or "x5u" parameter (but not both) can be used to indicate the

certificate used.

AIS service call example
Below is an example of calling the AIS getAccount service in the production environment

available at: https://xs2a.credit-agricole.pl/CaPolishAPI/prod/individual. This process consists of three

steps, which are further detailed below.

Authorization
The first step is to retrieve an authorization code. To do this, you need to call the /authorize

service with the following payload:

{

 "requestHeader": {

 "requestId": "8a740673-c751-4558-86e7-9fab31d91c4e",

 "tppId": " YYYYY-ZZZZ-TPPIdentificator",

 "userAgent": "SOAP-UI accounts.0-ais-getAccount",

 "isCompanyContext": false,

 "ipAddress": "127.0.0.1",

 "sendDate": "2019-09-06T09:36:47.536Z"

 },

 "response_type": "code",

 "client_id": " YYYYY-ZZZZ-TPPIdentificator ",

 "redirect_uri": "http://example.com/",

 "state": "252a5f94-dc2a-4260-9070-af91e3eb3cde",

 "scope": "ais",

 "scope_details": {

 "scopeGroupType": "ais",

 "consentId": "ffd4954c-e2c5-488d-b7e9-eeffad0c64ac",

 "scopeTimeLimit": "2019-10-06T11:28:50.000+02:00",

 "throttlingPolicy": "psd2Regulatory",

https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7797
https://xs2a.credit-agricole.pl/CaPolishAPI/prod/individual

5

 "privilegeList": [

 {

 "accountNumber": "PL78194000086704648427357299",

 "ais:getAccount": {

 "scopeUsageLimit": "single"

 }

 }

]

 }

}

The payload listed above must be signed with a QSEAL certificate and placed in the X-JWS-SIGNATURE

header of the request for a REST service. A request must contain the following headers to be processed

successfully:

Accept-Language: pl

X-REQUEST-ID: {value consistent with "requestId" field in the payload}

Accept: application/json

Accept-Charset: utf-8

Accept-Encoding: deflate

X-JWS-SIGNATURE: {JWS signature of the request}

In this example, the call made to a REST service is the following:

POST https://xs2a.credit-

agricole.pl/CaPolishAPI/prod/individual/v3_0.1/auth/v3_0.1/authorize HTTP/1.1

Accept-Encoding: gzip,deflate

Accept-Language: pl

X-REQUEST-ID: 8a740673-c751-4558-86e7-9fab31d91c4e

Accept: application/json

Accept-Charset: utf-8

Accept-Encoding: deflate

X-JWS-SIGNATURE: eyJ4NWMiOlsiTUlJRnl6Q0NCTE9nQXdJQkFnSUpBSUU1eGo5RC9CdzdN(...)

Content-Type: application/json;charset=UTF-8

Content-Length: 874

Host: xs2a.credit-agricole.pl

Connection: Keep-Alive

User-Agent: Apache-HttpClient/4.1.1 (java 1.5)

The expected response is an URL address to CABP’s online banking website, where the user can

authorize consent for the execution of the service.

Example response with redirection address:

{

 "responseHeader": {

 "requestId": "8a740673-c751-4558-86e7-9fab31d91c4e",

6

 "sendDate": "2019-09-06T09:36:48.834+02:00",

 "isCallback": false

 },

 "aspspRedirectUri": "https://ca24.credit-

agricole.pl/login?key=bQpG2SInmCEjQjYs&hash=%2B8s4CtTcrEiicV5N5aOxCHkpQ3k%3D"

}

When you go to the address defined in the "aspspRedirectUri" field you will arrive at CABP’s online

banking website. After authorization of consent in the online banking website, you will be redirected

to the address specified in the "redirect_uri" field of the request. In the above example this will be

"Http://example.com/". This address will be appended with the "code" parameter containing the

authorization code required in the next step and the "state" parameter with a value provided in the

authorize request. In this example the full redirection address is the following:

http://example.com?code=zJAjnsTwTPkTAekm&state=252a5f94-dc2a-4260-9070-
af91e3eb3cde

Token generation
In the next step, you need to generate an access token. To do this, you need to call the /token

service with a payload containing the obtained authorization code in the "code" field. In this example,

the payload is the following:

{

 "requestHeader": {

 "requestId": "7aa46703-1cac-457e-b616-a50f9f514713",

 "tppId": "YYYYY-ZZZZ-TPPIdentificator",

 "userAgent": "SOAP-UI accounts.0-ais-getAccount",

 "ipAddress": "127.0.0.1",

 "isCompanyContext": true,

 "sendDate": "2019-09-06T09:37:42.632Z"

 },

 "grant_type": "authorization_code",

 "code": "zJAjnsTwTPkTAekm",

 "client_id": "YYYYY-ZZZZ-TPPIdentificator",

 "redirect_uri": "http://example.com/"

}

A request must contain the following headers to be processed successfully:

Accept-Language: pl

X-REQUEST-ID: {value consistent with "requestId" field in the payload}

Accept-Charset: utf-8

Accept-Encoding: deflate

X-JWS-SIGNATURE: {JWS signature of the request}

The expected response is an access token for the execution of the service. In this example, the

response is the following:

{

7

 "responseHeader": {

 "requestId": "7aa46703-1cac-457e-b616-a50f9f514713",

 "sendDate": "2019-09-06T09:37:46.313+02:00",

 "isCallback": false

 },

 "access_token": "O3/D6+rfvDOTnUjMQx2EU6AQxGk=",

 "token_type": "bearer",

 "expires_in": "120",

 "refresh_token": "4oL6qdF86tHj48k2",

 "scope": "psd2-ais",

 "scope_details": {

 "privilegeList": [

 {

 "accountNumber": "PL78194000086704648427357299",

 "ais:getAccount": {

 "scopeUsageLimit": "single"

 }

 }

],

 "consentId": "ffd4954c-e2c5-488d-b7e9-eeffad0c64ac",

 "scopeTimeLimit": "2019-10-06T11:28:50.000+02:00",

 "throttlingPolicy": "psd2Regulatory"

 }

}

The response includes the token in the "access_token" field. If the token expires, a new one must

be generated using the token passed in the "refresh_token" field, provided that it has been issued.

Service execution
The last step is the execution of the business service. In this example, this is the retrieval of the

customer’s account information. To do this, you need to call the /getAccount service with a payload

containing in the "token" field a value that in the previous step has been received in the

"access_token" field. In this example, the payload is the following:

{

 "requestHeader": {

 "requestId": "fa884132-d089-11e9-bb65-2a2ae2dbcce4",

 "userAgent": "SOAP-UI accounts.0-ais-getAccount",

 "ipAddress": "127.0.0.1",

 "sendDate": "2019-09-06T09:37:50.583+02:00",

 "tppId": "YYYYY-ZZZZ-TPPIdentificator",

 "token": "O3/D6+rfvDOTnUjMQx2EU6AQxGk=",

 "isDirectPsu": true

 },

 "accountNumber": "PL78194000086704648427357299"

}

A request must contain the following headers to be processed successfully:

8

Accept-Language: pl

Authorization: {value consistent with the "token" field in the payload}

X-REQUEST-ID: {value consistent with the "requestId" field in the payload}

Accept-Charset: utf-8

Accept-Encoding: deflate

X-JWS-SIGNATURE: {JWS signature of the request}

The expected response is detailed account information. In this example, the response is the following:

{

 "responseHeader": {

 "requestId": "fa884132-d089-11e9-bb65-2a2ae2dbcce4",

 "sendDate": "2019-09-06T09:37:56.148+02:00",

 "isCallback": false

 },

 "account": {

 "accountNumber": "PL78194000086704648427357299",

 "nameAddress": {

 "value": [

 "ul. Niska 1, 50-000 Wrocław"

]

 },

 "accountType": {

 "code": "5555",

 "description": "description"

 },

 "accountTypeName": "Account Type Name",

 "accountHolderType": "individual",

 "accountNameClient": "Client Name",

 "currency": "PLN",

 "availableBalance": "99999",

 "bookingBalance": "99999",

 "bank": {

 "bicOrSwift": "AGRIPLPR",

 "name": "Credit Agricole Bank Polska SA",

 "address": [

 "Credit Agricole Bank Polska SA",

 "Legnicka 48 bud. C-D",

 "54-202 Wrocław"

]

 },

 "auxData": {

 "additionalProp1": "",

 "additionalProp2": "",

 "additionalProp3": ""

 }

 }

}

9

In this example, the above-listed response proves that the AIS getAccount service has been called

correctly. Any calls to all the other AIS, PIS and CAF services should be executed in a similar fashion

The specification of calls for individual services can be found in the technical documentation published

at the API Portal https://apiportal.credit-agricole.pl.

Changes and additional details vs PolishAPI standard
 In some aspects, the PolishAPI standard is fairly imprecise and is subject to inconsistent

interpretation. Below are specifications regarding selected areas in the context of how they were

implemented by the Bank. Scope of consent

 In the call to the /authorize service, consents to retrieve the payment status are not

supported, i.e.

 pis:getPayment

 pis:getBundle

 pis:getRecurringPayment

In addition, the following rules were adopted for potential permission combinations:

 in the service, pis group permissions can only be provided individually (they cannot be merged

with other permissions)

 permissions from the ais group can be provided under any combination

 ais-accounts permissions must be provided individually (they cannot be merged with other

permissions)

Acquiring permissions to retrieve payment status
 In accordance with the Polish API standard, acquiring permissions to retrieve the payment

status, the status of a payment bundle or recurring payment is possible by refreshing the token

(refreshToken) issued for the consent for payment, payment bundle or a recurring payment. The token

is refreshed using the token service in refreshToken mode after instructing a payment, payment bundle

or recurring payment (after using the permission from the original consent), but before the lapse of

the expiry date of the initial consent. The following transitions are possible:

Initial permission Acquired permission

pis:domestic pis:getPayment
pis:EEA pis:getPayment
pis:nonEEA pis:getPayment
pis:tax pis:getPayment
pis:bundle pis:getBundle
pis:recurring pis:getRecurringPayment

Below is an example of a call to the /token service acquiring permissions to execute the /getPayment

service based on a previously obtained consent to execute the /domestic service

{

 "requestHeader": {

 "requestId": "2bc25652-e8d6-11e9-81b4-2a2ae2dbcce4",

 "tppId": "YYYYY-ZZZZ-TPPIdentificator",

https://apiportal.credit-agricole.pl/

10

 "userAgent": "SOAP-UI refreshToken",

 "isCompanyContext": false,

 "ipAddress": "127.0.0.1",

 "sendDate": "2019-10-04T19:38:22.139Z"

 },

 "grant_type": "refresh_token",

 "refresh_token": "wkqLFectV5WsXPmd",

 "scope_details": {

 "scopeGroupType": "pis",

 "throttlingPolicy": "psd2Regulatory",

 "consentId": "72839b4e-e8ec-11e9-81b4-2a2ae2dbcce4",

 "scopeTimeLimit": "2019-10-16T11:28:50.000+02:00",

 "privilegeList": [

 {

 "pis:getPayment": {

 "scopeUsageLimit": "multiple",

 "paymentId": "3243564",

 "tppTransactionId": "85638563"

 }

 }

]

 }

}

In the above call, you must remember that

 the value of the "refresh_token" field must match the value returned in the

"refresh_token" field after calling the /token service acquiring the token to execute the

initial service, i.e. in this case /domestic

 the value of the "consentId" field must be equal to the value provided when the

/authorize service was called for the initial consent, i.e. in this case /domestic

 the value of the "paymentId", "bundleId" or "recurringPaymentId" field must be equal

to the value returned after calling the initial service, i.e. in this case /domestic

 the value of the "tppTransactionId", "tppBundleId" or "tppRecurringPaymentId""

field must be equal to the value provided after calling the service from the initial consent, i.e.

in this case /domestic. This field is optional.

 in the "scopeTimeLimit" field you can specify a new consent expiry date. This date is not

validated against the expiry date from the initial consent (you can specify a wider time horizon

for the new permission)

 in the "scopeUsageLimit" field you can specify a different value than in the initial consent

(you can obtain multiple permissions to retrieve the status of a payment, payment bundle or

a recurring payment)

Specifying the consent scope
 In exchangeToken mode, the /token service allows you to exchange a token with a ais-

accounts:getAccounts consent for a new token with a new, detailed scope of the AIS consent for

selected accounts. In this mode, you can obtain the following permissions:

11

 ais:getAccount

 ais:getHolds

 ais:getTransactionsDone

 ais:getTransactionsPending

 ais:getTransactionsRejected

 ais:getTransactionsCancelled

 ais:getTransactionsScheduled

 ais:getTransactionDetail

Below is an example of a call acquiring the getAccount permission based on the getAccounts consent:

{

 "requestHeader": {

 "requestId": "8b62b3d0-54cd-404d-8daa-918013599cc9",

 "tppId": "YYYYY-ZZZZ-TPPIdentificator",

 "userAgent": "SOAP-UI exchangeToken",

 "ipAddress": "127.0.0.1",

 "isCompanyContext": false,

 "sendDate": "2019-10-16T19:38:22.139Z"

 },

 "grant_type": "exchange_token",

 "exchange_token": "ImOUbP6_AOSuVjFMz3GD177SQjs=",

 "scope": "ais",

 "scope_details": {

 "scopeGroupType": "ais",

 "throttlingPolicy": "psd2Regulatory",

 "consentId": "e798d37c-c92c-41bf-806e-e0a61fb4811a",

 "scopeTimeLimit": "2019-11-16T11:28:50.000+02:00",

 "privilegeList": [

 {

 "accountNumber": "PL68146000095180629309555036",

 "ais:getAccount": {

 "scopeUsageLimit": "multiple"

 }

 }

]

 }

}

In the above call, you must remember that

 the value of the "exchange_token" field must be equal to the value returned in the

"access_token" field after calling the /token service acquiring a token to execute the

/getAccounts initial service

 account numbers indicated in the call must be included in the list received from the call to the

/getAccounts service

 the consent expiry date provided in the "scopeTimeLimit" field may not exceed the expiry

date of the initial consent

12

 the value of the "consentId" field should contain a new consent identifier

 in the "scopeUsageLimit" field you can specify a different value than in the initial consent

To modify the scope of the consent acquired in this manner, e.g. remove one of the acquired

permissions or remove one of the accounts from the consent, the /token service should be called

again in exchangeToken mode, in accordance with the above guidelines, with the indication of the

new scope of the AIS consent. The AIS consent obtained previously will be automatically invalidated.

Please note that removing the initial ais-accounts:getAccounts consent using the /deleteConsent

service will also remove all consents with the detailed scope generated on its basis.

Retrieving account information with account selection on the ASPSP side
 In the scenario, when the selection of accounts for which permissions will be granted is made

on the bank's side, information on selected accounts is provided in the response to the call to the

/token service in the "accountNumber" field, which is an element of the"privilegeList"

structure. Below is an example of a response:

{

 "responseHeader": {

 "requestId": "7aa46703-1cac-457e-b616-a50f9f514713",

 "sendDate": "2019-09-06T09:37:46.313+02:00",

 "isCallback": false

 },

 "access_token": "O3/D6+rfvDOTnUjMQx2EU6AQxGk=",

 "token_type": "bearer",

 "expires_in": "120",

 "refresh_token": "4oL6qdF86tHj48k2",

 "scope": "psd2-ais",

 "scope_details": {

 "privilegeList": [

 {

 "accountNumber": "PL78194000086704648427357299",

 "ais:getAccount": {

 "scopeUsageLimit": "single"

 }

 }

],

 "consentId": "ffd4954c-e2c5-488d-b7e9-eeffad0c64ac",

 "scopeTimeLimit": "2019-10-06T11:28:50.000+02:00",

 "throttlingPolicy": "psd2Regulatory"

 }

}

The account number obtained in this fashion should be later provided when calling the target service

for which the consent was given.

Renewal of SCA for AIS consent
 The option of renewing the SCA for an AIS consent was implemented using the /authorize

service. To renew a consent, you must call the /authorize service by indicating the identifier of the

13

previously given consent without providing the list of permissions in the "consentId" field. On this

basis, the system detects that a consent is being renewed. Below is an example of a call made in this

mode:

{

 "requestHeader": {

 "requestId": "86340673-b751-4558-8357-9fab21d91c8e",

 "tppId": "YYYYY-ZZZZ-TPPIdentificator",

 "userAgent": "SOAP-UI accounts.0-ais-getAccount-SCA",

 "isCompanyContext": false,

 "ipAddress": "127.0.0.1",

 "sendDate": "2019-10-04T11:16:56.536Z"

 },

 "response_type": "code",

 "client_id": "YYYYY-ZZZZ-TPPIdentificator",

 "redirect_uri": "http://example.com/",

 "state": "267a5f94-d32a-1860-9070-af37e3eb27de",

 "scope": "ais",

 "scope_details": {

 "scopeGroupType": "ais",

 "consentId": "0b5159d2-030f-4ad5-8591-0b489b935ade",

 "scopeTimeLimit": "2019-10-14T11:16:56.536Z",

 "throttlingPolicy": "psd2Regulatory"

 }

}

In the above call, you must remember that:

 the value of the "scopeTimeLimit" field should not exceed the date provided when giving

the consent (in the case of a shorter expiry date, the consent is updated)

Moreover, the renewal of the SCA for an AIS consent, which has been specified by means of the /token

service in exchangeToken mode does not automatically trigger the renewal of the subordinate

consent.

Request Limits
 The PolishAPI standard imposes a limit on calls to AIS services to a maximum of 4 calls without

user interaction within 24 hours. Queries are counted at the level of a single permission in the consent.

For example, if the consent contains the ais:getTransactionsDone and ais:getAccount permission, it

will allow for 4 history queries within 24 hours and 4 account details queries within 24 hours.

Therefore, query limits are not verified when the token is issued, but only when the business service

is called. Thus, in addition to the setting of the "is_user_session" header in the call to /token

service, the content of "isDirectPsu" header in the respective business methods calls is key here.

Restrictions on consent validity
 The maximum validity of PIS consents for a payment, payment bundle or recurring payment

instruction was capped at 15 minutes.

